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Inelastic granular gas: Computer simulations and kinetic theory of the cooling state
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We developed computer simulations of an inelastic granular gas which show that the energy decay proposed
by Goldhirsch and Zanetti@Phys. Rev. Lett.70, 1619 ~1993!# has a limited validity. Moreover, we give an
exact solution of the Liouville equation for the moments of the two-body homogeneous cooling distribution.
The latter includes velocity correlations which raises questions about the derivation of kinetic equations for
inelastic gases.@S1063-651X~99!07802-2#
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I. INTRODUCTION

During the last 30 years the study of granular media
been very active, and has provided important results wh
have enlarged our knowledge on this research field. So
authors have developed theoretical descriptions based on
drodynamiclike equations whose validity is restricted in de
sity and for weakly inelastic systems~a restitution coefficient
near 1!. The partial success of these efforts is due to the
that these formulations do not reveal some of the most c
acteristic and intriguing features of granular media such
the formation of clusters, segregation phenomena, inela
collapse, etc. It is precisely these features, absent in a u
hydrodynamic behavior, which make a formulation of gran
lar media an extremely difficult task. This last fact has l
several researchers to start to develop a kinetic theory
inelastic gases@1,2# whose main objective is to derive ma
roscopic flow equations from basic principles. Howev
since collisions between grains are inelastic, intrinsic attr
tors exist in the phase space@3,4# which are associated with
correlations among particles. Henceforth, a derivation of
kinetic equation for an inelastic gas should start at the le
of the exact Liouville equation and proceed by an adequ
reduction of the Bogoliubov-Born-Green-Kirkwood-Yvo
~BBGKY! hierarchy associated with it. On the other han
even if we suppose that an adequate kinetic equation ca
obtained, another crucial difficulty remains. That is, for i
elastic gases not submitted to external constraints or for
the local Maxwellian distribution is generally not a solutio
In the case of an inelastic gas, the reference state cann
the final evolution stage since the latter corresponds to
rest state for all the particles. Recent works in this field ba
on kinetic theory assume the existence of the so-called
mogeneous cooling state. For instance, Brey, Ruiz-Mont
and Cubero@5# started from the Liouville equation an
looked for a solution corresponding to an homogeneous s
by assuming that it depends only on the average kinetic
ergy. This led to their closed equation for the granular te
perature. In the first step of our work, we developed co
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puter simulations to verify previous results reported by ot
authors. These simulations were performed for an inela
gas for which the restitution coefficienta was varied be-
tween 1.0 and 0.7. Moreover, the simulations, which
based on the Boltzmann equation@direct simulation Monte
Carlo ~DSMC! method# exhibited deviations with respect t
the Maxwellian distribution. These facts motivated us to
consider from the most basic principles the kinetic appro
to inelastic gases. That is, in our approach, instead of star
with the Boltzmann equation or any of its enhanced versio
we investigated the properties that could be extracted fr
the complete Liouville equation, but we tried to find a res
lution with a minimal assumption, i.e., the homogeneity
the state. This led us to find an exact solution for the hom
geneous regime which shows that the temperature is no
only relevant parameter describing this regime. More p
cisely, we find exactly all the moments for this distributio
The differences between the results in Ref.@5# and ours are
the following. First, our distribution is a two-body distribu
tion which does not factorize. Second, it depends on an i
nite set of moments, and the result of Ref.@5# can be found
from ours.

The work reported here is organized as follows: In Sec
we present the computer simulations developed for an ine
tic granular gas by using an enhanced version of the di
Monte Carlo simulation method. In Sec. III we propose
Liouville equation for an inelastic granular gas for which t
moments of the two-body distribution function are exac
computed and where the demonstration is given in the
pendix. Finally, in Sec. IV we give several conclusions co
cerning the results obtained.

II. DIRECT MONTE CARLO SIMULATIONS
FOR AN INELASTIC GRANULAR GAS

An interesting feature of granular gases is their tende
to form dense clusters@6–8# of particles characterized by
collision rate larger than in the less dense regions. This
implies processes involving more than two particles, and
believe that a simulation based only on the Boltzmann eq
tion without some necessary modifications will not repr
duce important observations of inelastic granular gases. T
situation is similar to the case of a dense hard-sphere
2093 ©1999 The American Physical Society
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2094 PRE 59J. M. SALAZAR AND L. BRENIG
described by the Boltzmann equation, which gives an ex
lent description when the density and the range of forces
small, but, as the density increases, ceases to be valid@9#. In
order to overcome the difficulty of taking into account col
sions involving more than two particles we proceed in
similar way as was proposed in Ref.@10#, where the authors
proposed a modified version of the direct simulation Mo
Carlo method originally proposed by Bird@12#, which in-
cludes an additional displacement in the advection proc
and an enhanced collision rate@11#. Here we report two-
dimensional DSMC simulations of a granular gas compo
of identical hard disks performing inelastic collisions b
tween them without an energy input. The formulation of t
collision rate follows the lines given in Ref.@9#, and allows
us to study granular gases with high and low density regio
It is important to point out that these enhancements to
DSMC method do not modify the natural evolution of th
gas, and they play their role only when spatial inhomoge
ities appear. This last permits us to avoid wasting CPU ti
in high collisional regions as it occurs when we use
Monte Carlo method for studying granular media. The ana
sis of our simulations was focused to study the time evo
tion of the granular temperature@7# and the velocity distri-
butions.

The simulations were performed in a two dimension
simulation box of area (0.2 m)2 under periodic boundary
conditions. The number of particles used were 2.03104, the
time step used was equal to 2.031025 sec, and for each
simulation we performed 2.03105 iteration steps, which in
real time represents 4 sec. Under these conditions the m
free pathl was equal to 1.7831022 m and the dimensions
of the simulation box in terms ofl are of 11.2453l in thex
andy directions. Under these conditions the gas may be c
sidered as dilute at the initial time. In average each part
experienced 200 collisions. The particles are character
by a mass of 3.031026 kg and a diameter ofd52.0
31023 m. In the simulations the inelasticity of the coll
sions is represented by the restitution coefficienta, which
varied between 1.0~elastic case! and 0.7 by steps of 0.2
Moreover, the results reported for each value ofa were av-
eraged over ten simulations. Only the seed of the rand
numbers generator was changed at each simulation.

A. Temperature

Several authors@5,7,8#, inspired by the works of Jenkin
and Richman@19#, have studied the formation of spatial in
homogeneities of a granular gas by a kinetic theory
proach. These works have deduced, from hydrodynamic
assumptions, that the time evolution of the kinetic ene
~KE! of an inelastic granular gas in a homogeneous state,
obeys an equation of the formE(t)5E0 /(11At)2, where
E0 is the initial energy andA is a function of the restitution
coefficienta. Moreover, the formation of spatial instabilitie
were obtained by considering a Maxwellian velocity dist
bution in the homogeneous initial state. This last assump
seems justified for almost elastic collisions by experimen
studies@13–15# on dilute disk gases connected to a reserv
of energy, which showed that the velocity distribution fun
tions are very close to a Maxwell-Boltzmann distribution f
a close to 1.0. Moreover, density profiles show the form
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tion of dense slowly moving clusters and particles outs
the clusters with high velocities which violates the equip
tition of energy@8#. Another important point obtained from
experimental studies is that the exchange of energy in sho
is not sufficient to equalize the distributed energy. It is im
portant to remark that in most works the granular gas
scribed by kinetic approaches does not include any ene
source to equilibrate the energy loss due to the collisi
between particles, while the experiments are connected
reservoir of energy. In Sec. II B we show, as an exact c
sequence of the Liouville equation for an inelastic ha
sphere gas, that the two- and one-body distributions are
necessarily Maxwellian. Moreover, the nonfactorizability
the two-body distribution raises questions about the der
tion of the kinetic equations for such systems.

As mentioned above, various authors@5,7,8# found that
the time evolution of the energy in a homogeneous cool
regime~HCR! is of the form

E~ t !5
E~0!

~11t/t!2

or, equivalently,

E~ t !21/25ht1b. ~1!

In Fig. 1 we give the results obtained for the time evoluti
of the inverse of the square root of the KE,E21/2, for the first
900 iteration steps with 0.98<a<0.70. This figure shows
that for a5(0.8,0.98) the energy time dependence is, qu
tatively, in agreement with the results given in Refs.@7,8#.
But for 0.7,a,0.8, Eq.~1! is obeyed only for the first 300
iteration steps, which in average represent less than one
lision per particle. Figure 2~a! shows the time evolution o
the KE for the granular gas defined above and for the fi
73104 of 23105 iteration steps. This time corresponds,
average, to 200 collisions per particle. The last figure illu
trates the decay of the KE for different values of the resti
tion coefficient, and we can observe, as expected, that
cooling state is reached more rapidly asa is decreased. In
Fig. 2~b! we give the time evolutions ofE(t)21/2 for the
different values ofa used, and we show that these tim
evolutions do not obey Eq.~1! for long times. The best fitted
curve we obtained for the time evolution of 1/AE is given by

E~ t !21/25a2

~a12a2!

11expS t2t0

a3
D , ~2!

This last result, which encloses those given in Fig. 1, s
gests that the time evolution of the energy proposed by
~1! has a limited validity. The important point to stress he
is that the region where Eq.~1! is valid in our simulations
corresponds to a state where, on average, the particles
experienced less than a collision. Therefore, we can rea
ably assume that the system has not yet reached the ho
geneous regime.

B. Velocity distributions

We analyzed the velocity distributions obtained fro
simulations performed for the granular gas described in S
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FIG. 1. Time evolution ofE21/2 for values of the restitution coefficient varying froma5(0.7,0.98) for the first 900 iteration steps.
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II A for a5(1.0,0.7). We considered the speed distribut
v5(vx

21vy
2)1/2 and thevx component of the velocity. Sev

eral simulations were performed by considering as ini
conditions one of the three following initial velocity distr
bution functions: a Maxwellian, a Gaussian, and a cons
distribution. We observed that these distributions led
granular gas to the same class of asymptotic velocity dis
bution. The results presented here used a constant initia
locity distribution with random initial positions and averag
over ten simulations. Figure 3~a! shows the speed distribu
tion for an elastic granular gas which exhibits an excell
agreement with its corresponding Maxwell-Boltzmann~MB!
distribution. Fora in the range~0.98,0.70! we obtained, in-
stead of a Maxwellian, a distribution which can be assim
lated to a Gaussian where the width of the distribution
creases as the inelasticity increases@Fig. 3~b!#.

The analysis of thevx distribution for a51.0 yields a
Gaussian distribution@Fig. 4~a!# of the form

f ~vx!5y01
A

wA~p/2!
expS 22S vx2vc

w D 2D . ~3!

A similar result was obtained fora5(0.98,0.70). In Fig.
4~b! we show that the width of the distribution decreases
the inelasticity increases. This last is in accordance with
results obtained for the speed. We believe that this decr
in the velocity range implies velocity correlations whic
should be included in the distribution function. A possibili
to include these velocity correlations is detailed in the n
sections.

III. HOMOGENEOUS STATE: EXACT RESULTS
ON THE VELOCITY DISTRIBUTION

In this section we study theoretically the homogeneo
regime of an inelastic hard sphere gas. Our objective
complete specification of the velocity distribution for th
state. The reason behind this analysis is twofold. The firs
l

nt
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e-

t

-
-

s
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t

s
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related to the derivation of the kinetic equations for inelas
hard sphere gases. The second concerns the derivatio
hydrodynamiclike equations for such systems. Indeed, in
inelastic gas not submitted to external forces or constra
there is no equilibrium distribution except the state of co
plete rest for all the particles. Thus hydrodynamic expa
sions like the Chapman-Enskog scheme must be recon
ered. Such an expansion must be performed aroun
velocity distribution valid in a locally homogeneous sta
This means that the knowledge of an explicit solution fo
complete homogeneous state is essential: It would prov
the zero order distribution around which a gradient exp
sion may be performed. We show below that a promis
answer to this question has been found@16#. More precisely,
we find the complete set of moments for the reduced tw
body distribution. This result is exact since it has been
rived without any approximation from the complete Lio
ville equation for an inelastic hard sphere gas. T
distribution function can be inferred from the infinite set
its moments under certain conditions on the parameters.

A. Liouville equation

We consider a gas of identical macroscopic spheres
finite radius interacting by inelastic and instantaneous co
sions of restitution coefficienta (0<a<1). Each particle
moves, between collisions, with constant velocity in
straight line motion. The collision takes place when the c
ter of two particles are at a distance equal to the diameta
of a particle. The particles are smooth spheres, so tha
change affects the projection of the relative velocity on
tangential plane at the contact point of the two collidi
spheres. The construction of the pseudo-Liouville equat
for inelastic hard spheres is quite similar to that for elas
collisions@2,10,17,18#. The only difference is the nonconse
vation of the phase space volume due to the inelasticity
the hard sphere collisions. This feature is taken into acco
in the collision term by the Jacobian of the phase-sp
transformation corresponding to the collision:
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FIG. 2. ~a! Time evolution of the kinetic energy~in Joules! for the first 73104 iteration steps fora50.98~continuous line!, a50.90~–!,
a50.80 (•2), anda50.0 (•). ~b! Time evolution ofE21/2 obtained from simulations for 23104 iterations. The continuous bold line
corresponds toa50.7, while the thin continuous line corresponds toa50.98.
te

f
:
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-

vW i85vW i2S 11a

2 D eW~eW•vW i j !, ~4!

vW j85vW j1S 11a

2 D eW~eW•vW i j !, ~5!

whereeW is the unit vector along the direction from the cen
of particlej to the center of particlei, and the primed veloci-
ties represent the post-collision data. The relative velocityvW i j
is defined as

vW i j 5vW i2vW j .
r

Transformations~4! and~5! conserve the total momentum o
the two particles, but their total kinetic energy decreases

E85E2
m

4
~12a2!~eW•vW i j !

2, ~6!

where m is the mass of a particle. With these remarks
mind, the Liouville equation can be written as

]rN

]t
1(

i 51

N

vW i•
]rN

]rW i

5
1

2 (
i , j 51

N

K ~ i j !rN , ~7!

whererN is the N-body distribution function and the colli
sion term for two particlesi , j reads
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FIG. 3. ~a! Comparison between the Maxwell-Boltzmann distribution ofv5(vx
21vy

2)1/2 ~solid line! and the results obtained by simula
tions for a51.0. ~b! Speed distributions obtained fora50.98 ~s!, a50.90 ~* !, a50.8 ~-!, anda50.7(2•).
i
b

the

u-
K ~ i j !rN5a2E d2e~eW•vW i j !Q~eW•vW i j !

3H 1

a2
d~rW i j 2aeW !rN~$rWk%,$vW k%kÞ i , j ,vW i8,vW j8!

2d~rW i j 1aeW !rN~$rWk%,$vW k%!J ~8!

and whererW i j 5rW i2rW j , vW i8 andvW j8 are given by Eqs.~4! and
~5!. Here we do not give the proof of this result since asim
lar equation has been recently obtained independently
Brey, Dufty, and Santos@2#.
-
y

B. Liouville equation for the HCR

For a spatially homogeneous state such as the HCR
distribution rN depends only on the relative positionsrW i j .
Hence, the free flow term of Eq.~7! is replaced by

1

2 (
i , j 51

N

vW i j •
]rN

]rW i j

.

By integrating over the positions and velocities ofN21 par-
ticles, Eq.~7! leads to an equation for the one-body distrib
tion f 1 which reads
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FIG. 4. vx distributions and fitted curves~dashed line! for a50.98 ~s!, a50.90 ~* !, a50.8 ~triangle!, anda50.7 ~solid line!.
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] f 1~vW 1 ,t !

]t
5a2E d3vW 2E d2eW~eW•vW 12!Q~eW•vW 12!

3S 1

a2
f 2~rW1 ,rW12aeW ,vW 18 ,vW 28!

2 f 2~rW1 ,rW11aeW ,vW 1 ,vW 2!D . ~9!

In the collision term of this reduced equation appears
two-body distributionf 2 which, in turn, obeys an equatio
whose collision term containsf 3 . In this way, an infinite
BBGKY hierarchy of equations is generated for the reduc
distribution functions of growing order. For dilute gases
elastic hard spheres, this hierarchy is truncated by the
lecular chaos assumption which, in a few words, amount
factorizing f 2 into f 1f 1 . This factorization implies the small
ness of the velocity correlations. However, for inelastic h
sphere gases, numerical simulations show the existenc
e

d
f
o-
to

d
of

attractors in phase space@3,4#. Such attractors imply non
trivial velocity correlations. Henceforth, we believe that t
above truncation hypothesis should be carefully revised.

C. An exact result for the HCR two-body distribution

First, let us show that although the kinetic energy is n
conserved in the collision of two particles, there remain
part of that energy which is invariant. To show this, we i
troduce the center of mass velocity of the two particles,

uW 125
vW 11vW 2

2
, ~10!

along the relative velocityvW 12 already defined above. Th
latter may be projected along the unit vectoreW which lies on
the direction from the center of particle 2 to the center
particle 1:

vW 125gW 1eWg, ~11!
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with

gW 5~ I 2eY3eY !•vW 12 ~12!

and

g5eW•vW 12. ~13!

The definitions ofuW 12 andvW 12, allow us to write

vW 15uW 121
vW 12

2
, ~14!

vW 25uW 122
vW 12

2
. ~15!

Thus we can write

vW 15uW 121
gW 1eWg

2
, ~16!

vW 25uW 122
gW 1eWg

2
. ~17!

When Eqs.~16! and ~17! are inserted intoE5(m/2)(v1
2

1v2
2), one obtains

E5mS u12
2 1

g2

4
1

g2

4 D , ~18!

where we have used the fact thatgW is orthogonal toeWg.
However,

E05m~u12
2 1g2/4!, ~19!

is invariant in the inelastic collision. Indeed,uW 12 is the center
of mass velocity which is proportional to the total mome
tum of the two particles. The latter and the kinetic energy
the center of mass are invariants, as can be seen from
~4! and ~5!. For gW , its value after collision is

gW 85~ I 2 e⇀3 e⇀ !•vW 128 . ~20!

More explicitly, we have

gW 85~ I 2eW3eW !•@vW 122~11a!eW~eW•vW 12!#, ~21!

and, by using

~ I 2 e⇀3 e⇀ !•eW50, ~22!

we obtain

gW 85gW . ~23!

A glance at Eq.~18! shows that the kinetic energy may b
decomposed asE5E01E1 , with

E15
m

4
g2. ~24!
-
f
qs.

The variation ofE1 after collision is given by

E185
m

4
g82 ~25!

or, equivalently,

E185
m

4
~eW•vW 128 !2, ~26!

with

~eW•vW 128 !5eW•„vW 122~11a!eW~eW•vW 12!…. ~27!

Using the fact thateW is a unit vector, one obtains

g852ag, ~28!

and finally we obtain

E182E152
m

4
~12a2!g2. ~29!

The above decomposition ofE suggests that the time evolu
tion of the HCR is essentially due to the variation of t
successive moments of the quantityg @see Eq.~13!#. In fact,
as we show next, these moments obey an exact infinite h
archy of equations independently of the moments of
other phase-space variables of the system. This is rea
proved by computing the time evolution of the success
moments ofugu ~see the Appendix for the detailed demo
stration!:

xk5^uguk&. ~30!

Using the Liouville equation~7!, for the HCR and integrat-
ing over all space variables, one readily obtains an exp
sion depending only on the two-body distribution. This
due to the fact thatg is a two-body phase-space quantit
Next a change of variables to the center of mass and to
relative positions and velocities leads, after some simple
tedious algebra, to the hierarchy

]xk

]t
52pna2~ak21!xk11 ~31!

for any integer value ofk. These last equations are an exa
consequence of the Liouville equation. To our knowled
these equations constitute a new result. This differen
differential equation can be exactly solved by calculating
Taylor series ofxk in time. The recursion relation betwee
successive time derivatives generated by this equation
ables us to derive the exact general term of the above Ta
series. The derivation is straightforward, and one obtains
solution

xk~ t !5(
l 50

`
@2p~a21!na2t# l

l !

@k1 l 21#!

@k21#!
xk1 l~0!,

~32!

where
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FIG. 5. ~a! Time dependence forx2(t) and forAx2(t) in arbitrary units of time fora50.98, 0.90, 0.80, 0.70, and 0.60. In~a! the closest
curve to thex axis corresponds toa50.6, and the upper curve was obtained fora50.98. In~b! the nearest curve to thex axis corresponds
to a50.98, and the upper curve corresponds toa50.6.
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@k#! 5)
l 51

k S a l21

a21 D ~33!

is the q factorial of k @19# for q5a. The above solution is
valid for anyk>1. Clearly, the above series have generall
finite radius of convergence sincea,1.

Let us analyze more closely the series giving the mom
x2(t). Generally, for a large set of initial conditions, th
series has a finite radius of convergence. However, this c
a

nt

n-

vergence is very slow. This is perhaps due to singularitie
the complex plane of the time which cannot be detected
rectly from the Taylor series. Hence an excessively la
number of terms is needed to obtain the correct long ti
behavior ofx2(t). In Fig. 5 we give the curves forx2(t) and
1/Ax2(t) obtained with our series. These curves should
compared with our simulation results~see Fig. 1! and the
theoretical results of Ref.@2#. It can be seen that our curve
agree with those of Ref.@2# for a short time. However, in
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order to compare the behavior for larger times, some con
gence acceleration algorithm, such as Shanks transforma
or Pade´ summation, should be appplied to our series. F
thermore, analytical methods may be envisaged to find
asymptotic behavior of the function defined by our seri
such as the Borel integral summation. This analysis ne
some time to be developed, and will be presented in a fur
publication. Nevertheless, an important point that can
clarified already at this level of our work is the following:
can be shown, without ambiguity, that our series@Eq. ~32!#
gives, for values ofa near 1, the equation proposed in Re
@2# @see Eq.~43!, given in Sec. IV#. This can be demon
strated in the following way. Equations~32! and ~33! give,
for k52,

x2~ t !5(
l 50

`

@2p~a21!na2t# l
@11 l #!

l ! @1#!
x21 l~0!. ~34!

For a near 1, thea factorial behaves like the factorial

lim
a→1

@n#! 5n! ~35!

since

@n#![ )
m51

n S am21

a21 D
and

lim
a→1

S am21

a21 D5m.

Thus Eq.~34! may, fora'1, be rewritten as

x2~ t !5(
l 50

`

@2p~a21!na2t# l~11 l !x21 l~0!. ~36!

Let us consider initial moment of the form

x21 l~0!5s0
21 l , ~37!

with s0 a positive real number. Hence Eq.~36! becomes

x2~ t !5s0
2(

l 50

`

@2p~a21!na2s0t# l~11 l !, ~38!

which can be readily summed to yield

x2~ t !5
s0

2

~112pua21una2s0t !2 . ~39!

This expression is comparable to the result of Ref.@2# for
T(t) @Eq. ~43! given below#, provided

t5
1

2pua21una2s0
. ~40!

Thus, as a by product, we have obtained an analytic form
the characteristic time of the dissipative decay of energy.
r-
ion
-
e
,

ds
er
e

r
is

already satisfying to remark that it depends on the ini
states0 but, it is important to notice, as expected, that
diverges fora51.

IV. CONCLUSIONS

The simulations presented here extend over a large ra
of inelasticity strengtha. For most values of this last param
eter we observed that the time evolution of the average
netic equation is not that proposed by Eq.~43!. Our theoret-
ical results confirm this result~see Fig. 5!. However, more
systematic and quantitative verifications of these statem
should be carried out.

Having in hand the exact set of moments ofugu for the
two-body HCR distribution function, we are now in a pos
tion to build the distribution function and to study it
asymptotic behavior. Since these last calculations are sti
progress, we conclude with the following remarks. First, t
decomposition ofE into an invariant partE0 and a variable
partE1 indicates that a completef 2 function, built as a prod-
uct of an arbitrary function ofE0 and a function ofg with its
moments given by Eq.~32!, is a solution of the Liouville
equation. Such a two-body distribution is clearly not facto
izable into two f 1 functions. Henceforth, velocity correla
tions are not negligible. Second, thef 2 distribution, with
moments given by Eq.~32!, is very unlikely to be a Gaussia
for low values ofa. Third, the evolution equation for the
granular temperature,

T5
2

3nkb
^E&, ~41!

which is quoted by most of the authors~see Refs.@3,7,8#! has
a limited validity. The corresponding evolution equatio
reads

]T~ t !

]t
52

2

3nkB
~12a2!WT3/2, ~42!

whereW is independent of the temperature and is an integ
over a rescaled two-body distribution. The parametern rep-
resents the density andkB is the Boltzmann constant. Equa
tion ~42! can be solved in terms of the initial conditions

T~ t !5T~0!S 11
t

t D 22

, ~43!

wheret is a characteristic time constant depending ona and
W. Moreover, Eq.~42! may be obtained from Eqs.~31! for
k52 by assuming a factorization ofx3 into x2x1 . Thus, the
time dependence ofT(t) given by Eq.~43! is an approxima-
tion whose validity domain should be explored by compar
it with the exact time dependence given by Eq.~32!. As far
as this is concerned, the simulations reported above exh
in some cases strong deviations with respect to Eq.~32!. We
think our results call into question the classical assumpti
of molecular chaos and of the generality of the Gauss
shape for the asymptotic distribution when we study an
elastic granular gas. Finally, we hope our results will help
clarify these fundamental problems.
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APPENDIX: DERIVATION OF THE RECURSION
EQUATION FOR THE MOMENTS Šzgzk

‹

Let us consider the moments^ug12uk& where

g125
~rW12rW2!•~vW 12vW 2!

urW12rW2u
.

tio
an

b

k
ir
.

We compute them for any positive integerk with the exact
distribution

rN~rW1 , . . . ,rWN ,vW 1 , . . . ,vW N ;t !,

which is a solution of the Liouville equation@Eq. ~10!#. That
is,

^ug12uk&5E d3r 1•••d3vNug12ukrN~ t !, ~A1!

which obeys the following equation for a spatially homog
neous state:
]

]t
^ug12uk&52E d3r 1•••d3vNug12uk

1

2 (
i 51

N

(
j 51

N

~vW i2vW j !•S ]

]rW i

2
]

]rW j
D rN~ t !

1
a2

2 E d3r 1•••d3vNug12ukE d2e(
i 51

N

(
j 51

N

eW•vW i , jQ~eW•vW i , j !

3H 1

a2d~rW i , j2aeW !rn~rW1 , . . . ,rWN ,vW 1 , . . . ,vW i8 ,vW j8 , . . . ,vW N ;t !

2d~rW i , j1aeW !rn~rW1 , . . . ,rWN ,vW 1 , . . . ,vW N ;t !J . ~A2!
ble
ral
erm
The first term on the right-hand side of the above equa
corresponds to the free flow of the two particles 1 and 2,
gives a vanishing contribution to (]/]t)^ug12uk&. This last is
easily shown as follows; let us denote the free flow term
F. Then it reads

F52E d3r 1d3r 2d3v1d3v2u r̂ 12•vW 12ukvW 12•¹W 12f 2 ,

and an integration by parts gives

F5E d3r 1d3r 2d3v1d3v2 f 2vW 12•¹W 12u r̂ 12•rW12uk,

where r̂ 12 denotes the unit vector alongrW12. The gradient
yields

F5kE d3r 1d3r 2d3v1d3v2u r̂ 12•vW 12uk21f 2vW 12•¹W 12u r̂ 12•vW 12u

where an easy calculation for the gradient leads to:

vW 12•¹W 12u r̂ 12•vW 12u5
1

urW12u
$uv12u2 sgn~ r̂ 12•vW 12!

2~ r̂ 12•vW 12!u r̂ 12•vW 12u%.
n
d

y

Hence, the free flow term can be written as

F5kE d3r 1d3r 2d3v1d3v2 f 2~rW1 ,rW2 ,vW 1 ,vW 2!

3
1

urW12u
ug12uk21$~g12

2 1g12
2 !sgn~g12!2g12ug12u%50,

in which we used the fact that

uv12u25g12
2 1g12

2 .

It can be easily seen that the integrand is odd in the varia
g12 if f 2 is supposed even in that variable, which is a natu
assumption for a homogeneous state. Thus the free flow t
vanishes because the integration overvW 1 andvW 2 includes an
integral overg12 from 2` to 1`. The second term on the
right-hand side of Eq.~A2! provides the contribution of col-
lisions to the time evolution of̂ug12uk&. Three types of con-
tributions appear in that term. The first corresponds toi
51, j 52 or i 52, j 51. The second appears fori 51 and 2
and j Þ1 and 2 and permutation ofi and j. Finally, the third
case corresponds toi and j Þ1 and 2. Let us start with the
first contribution,i 51,j 52 ~or the converse!. Thus we can
write
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K125
a2

2 E d3r 1•••d3r Nd3v1•••d3vNug12ukE d2e eW•vW 12Q~eW•vW 12!

3H 1

a2 d~rW122aeW !r~$rW%,vW 18,vW 28,vW 3 , . . . ,vW n ;t !2d~rW121aeW !rN~$rW%,$vW %;t !J . ~A3!
le
The integration of the last equation over the variab
rW3, . . . ,rWN, andvW 3, . . . ,vW N, which act directly onrN , gives

K125
a2

2 E d3r 1d3r 2d3v1d3v2ug12ukE d2e eW•vW 12Q~eW•vW 12!

3H 1

a2 d~rW122aeW ! f 2~vW 1 ,rW2 ,vW 18,vW 28;t !

2d~rW121aeW ! f 2~rW1 ,rW2 ,vW 1 ,vW 2 ;t !J .

Now, by performing the transformations

rW12rW25rW12,
s rW11rW2

2
5RW 12,

with a Jacobian equal to 1, and

vW 12vW 25vW 12,

vW 11vW 2

2
5uW 12,

followed by the decomposition ofvW 12 into its projectionsg12

on eW andg12 on the plan orthogonal toeW , one obtains, after
integrating over the variablesRW 12 anduW 12,
K125
a2

2 E d2r̂ 12E
2`

`

dg12E d2g12ug12uk11H 1

a2 Q~2g12!f2~ r̂ 12,g128 ;t !2Q~g12!f2~ r̂ 12,g12;t !J , ~A4!

wheref2 is the two-body distribution reduced overRW 12 anduW 12. Now, since we know from the binary collision law that

g1252ag128 ,

we can insert this relation into Eq.~A4! and obtain, after a simplification of powers ofa and a grouping of terms,

K125
a2

2
~ak21!E d2r̂ E

0

`

dg12ug12uk11f~ r̂ 12,g12;t !,

which finally gives

K1252pna2~ak21!^ug12uk11&. ~A5!

For the second type of contribution (i 51 and 2 andj Þ1 and 2, or the converse! on the right-hand side of Eq.~A2!, we
proceed as follows. For example, let us assumei 51 and j 53. Then the term to analyze is

K1235
a2

2 E d3r 1•••d3r Nd3v1•••d3vNug12ukE d2e eW•vW 13Q~eW•vW 13!

3H 1

a2 d~rW132aeW !rN~rW1 , . . . ,rWN ,vW 1 , . . . ,vW 18,vW 2,vW 38, . . . ,vW N ;t !2d~rW131aeW !rN~$rW%,$vW %;t !J . ~A6!
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Proceeding along the same lines as in the previous casi

51, j 52), we can replace the variablesrW1 , rW2 , andrW3 by
the center of mass positionsR123, vW 1 , vW 2 , and vW 3 by the
center of mass velocityuW 123, and their corresponding rela
tive velocitiesvW 12 andvW 13 and relative positionsrW12 andrW13.
Afterward we perform the integrals over all the other va
ables with the exception ofrW12, r̂ 13, g12, and g13. This
leads to

K1235
a2

2 E d3r 12d
2r̂ 13dg12dg13ug12ukg13

3H 1

a2 Q~2g13! f 3~rW12, r̂ 13,g128 ,g138 ;t !

2Q~g13! f 3~rW12, r̂ 13,g12,g13;t !J ~A7!

Here again we have decomposed the velocitiesvW 12 and vW 13

into g12 andgW 12, andg13 andgW 13, respectively, and we als
integrated overgW 12 andgW 13. By the collision rules we have
that

g1352ag138 . ~A8!

Now, by using Eqs.~4! and~5! for particles 1 and 3 with Eq
~A8!, we obtain that
.

. E
(
g125g128 2S 11a

2 D r̂ 12• r̂ 13g138 . ~A9!

Moreover, by inserting Eqs.~A8! and~A9! into Eq.~A7!, we
obtain a factor in the integrand of Eq.~A7! of the form

Ug128 2S 11a

2 D r̂ 12• r̂ 13g138 Uk

g138 , ~A10!

which can be rewritten as follows:

Ug128 2S 11a

2 D r̂ 12• r̂ 13r̂ 13•vW 138 Uk

r̂ 13•vW 138 .

The absolute value factor is clearly even inr̂ 13. Hence the
whole expression is odd in that variable. This leads us
claim that the integrand appearing in Eq.~A7! is odd in r̂ 13
provided that f 3 be even ing13. Henceforth, the integra
over r̂ 13 involved in Eq.~A7! vanishes. For the third type o
contribution (i and j different from 1 and 2! it is straightfor-
ward to show that it vanishes. Indeed, the integrations o
all the variables except those attached to particles 1 an
may first be performed. Using the velocities after and bef
collisions, it can be seen directly that all these terms
identically zero by the same reasoning as that leading to
conservation of the norm of the distribution. Thus, we ha
established the differential difference@Eq. ~31!# for the mo-
ments^ug12uk&.
tt.

-
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-
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