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Inelastic granular gas: Computer simulations and kinetic theory of the cooling state
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We developed computer simulations of an inelastic granular gas which show that the energy decay proposed
by Goldhirsch and ZanetfiPhys. Rev. Lett70, 1619(1993] has a limited validity. Moreover, we give an
exact solution of the Liouville equation for the moments of the two-body homogeneous cooling distribution.
The latter includes velocity correlations which raises questions about the derivation of kinetic equations for
inelastic gase4.51063-651X99)07802-2
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[. INTRODUCTION puter simulations to verify previous results reported by other
authors. These simulations were performed for an inelastic
During the last 30 years the study of granular media hagas for which the restitution coefficient was varied be-
been very active, and has provided important results whictiween 1.0 and 0.7. Moreover, the simulations, which are
have enlarged our knowledge on this research field. Someased on the Boltzmann equatifdirect simulation Monte
authors have developed theoretical descriptions based on h@arlo (DSMC) method exhibited deviations with respect to
drodynamiclike equations whose validity is restricted in denthe Maxwellian distribution. These facts motivated us to re-
sity and for weakly inelastic systenta restitution coefficient ~consider from the most basic principles the kinetic approach
near 1. The partial success of these efforts is due to the facto inelastic gases. That is, in our approach, instead of starting
that these formulations do not reveal some of the most chawith the Boltzmann equation or any of its enhanced versions,
acteristic and intriguing features of granular media such a¥/e investigated the properties that could be extracted from
the formation of clusters, segregation phenomena, inelasti&e complete Liouville equation, but we tried to find a reso-
collapse, etc. It is precisely these features, absent in a usulltion with a minimal assumption, i.e., the homogeneity of
hydrodynamic behavior, which make a formulation of granu-the state. This led us to find an exact solution for the homo-
lar media an extremely difficult task. This last fact has ledgeneous regime which shows that the temperature is not the
several researchers to start to develop a kinetic theory d¥nly relevant parameter describing this regime. More pre-
inelastic gasefl,2] whose main objective is to derive mac- Cisely, we find exactly all the moments for this distribution.
roscopic flow equations from basic principles. However,The differences between the results in R&f.and ours are
since collisions between grains are inelastic, intrinsic attracthe following. First, our distribution is a two-body distribu-
tors exist in the phase spaf®4] which are associated with tion which does not factorize. Second, it depends on an infi-
correlations among particles. Henceforth, a derivation of thelite set of moments, and the result of Réf] can be found
kinetic equation for an inelastic gas should start at the levefrom ours.
of the exact Liouville equation and proceed by an adequate The work reported here is organized as follows: In Sec. II
reduction of the Bogoliubov-Born-Green-Kirkwood-Yvon We present the computer simulations developed for an inelas-
(BBGKY) hierarchy associated with it. On the other hand,tic granular gas by using an enhanced version of the direct
even if we suppose that an adequate kinetic equation can Bdonte Carlo simulation method. In Sec. Il we propose a
obtained, another crucial difficulty remains. That is, for in- Liouville equation for an inelastic granular gas for which the
elastic gases not submitted to external constraints or force§)oments of the two-body distribution function are exactly
the local Maxwellian distribution is generally not a solution. computed and where the demonstration is given in the ap-
In the case of an inelastic gas, the reference state cannot pendix. Finally, in Sec. IV we give several conclusions con-
the final evolution stage since the latter corresponds to theerning the results obtained.
rest state for all the particles. Recent works in this field based
on kinetic theory assume the existence of the so-called ho-
mogeneous cooling state. For instance, Brey, Ruiz-Montero,
and Cubero[5] started from the Liouville equation and
looked for a solution corresponding to an homogeneous state An interesting feature of granular gases is their tendency
by assuming that it depends only on the average kinetic erto form dense clusterf6—8] of particles characterized by a
ergy. This led to their closed equation for the granular tem-<ollision rate larger than in the less dense regions. This last
perature. In the first step of our work, we developed comimplies processes involving more than two particles, and we
believe that a simulation based only on the Boltzmann equa-
tion without some necessary modifications will not repro-
*Electronic address: Ibrenig@ulb.ac.be duce important observations of inelastic granular gases. This
TURL:http:/dalembert.u-bourgogne frjmarcos situation is similar to the case of a dense hard-sphere gas
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described by the Boltzmann equation, which gives an exceltion of dense slowly moving clusters and particles outside
lent description when the density and the range of forces arthe clusters with high velocities which violates the equipar-
small, but, as the density increases, ceases to be[@lith  tition of energy[8]. Another important point obtained from
order to overcome the difficulty of taking into account colli- experimental studies is that the exchange of energy in shocks
sions involving more than two particles we proceed in ais not sufficient to equalize the distributed energy. It is im-
similar way as was proposed in Rg10], where the authors portant to remark that in most works the granular gas de-
proposed a modified version of the direct simulation Montescribed by kinetic approaches does not include any energy
Carlo method originally proposed by Bifd 2], which in-  source to equilibrate the energy loss due to the collisions
cludes an additional displacement in the advection procedsetween particles, while the experiments are connected to a
and an enhanced collision rafél]. Here we report two- reservoir of energy. In Sec. IIB we show, as an exact con-
dimensional DSMC simulations of a granular gas composedequence of the Liouville equation for an inelastic hard
of identical hard disks performing inelastic collisions be- sphere gas, that the two- and one-body distributions are not
tween them without an energy input. The formulation of thenecessarily Maxwellian. Moreover, the nonfactorizability of
collision rate follows the lines given in R€f9], and allows the two-body distribution raises questions about the deriva-
us to study granular gases with high and low density regiondion of the kinetic equations for such systems.

It is important to point out that these enhancements to the As mentioned above, various authd&7,8 found that
DSMC method do not modify the natural evolution of the the time evolution of the energy in a homogeneous cooling
gas, and they play their role only when spatial inhomogeneregime(HCR) is of the form

ities appear. This last permits us to avoid wasting CPU time

in high collisional regions as it occurs when we use the E(t)= E(0)

Monte Carlo method for studying granular media. The analy- (1+1t/7)2
sis of our simulations was focused to study the time evolu- _
tion of the granular temperatuf@] and the velocity distri-  Or, equivalently,
butions.
E(t) 2= nt+B. @

The simulations were performed in a two dimensional
simulation box of area (0.2 rA)under periodic boundary
conditions. The number of particles used werex210%, the
time step used was equal to XQ0 ° sec, and for each
simulation we performed 2X10° iteration steps, which in
real time represents 4 sec. Under these conditions the me

free pathh was equal to 1.7810"" m and the dimensions But for 0.7< @< 0.8, Eq.(1) is obeyed only for the first 300

of :jheds_lmti!atlongog mttr?rms of ?jr.f of 1t1h'245<)‘ n thte)x iteration steps, which in average represent less than one col-
andy directions. Under these conditions the gas may be COryq;,, per particle. Figure @) shows the time evolution of

sidered as dilute at the initial time. In average each particlg, . «E for the granular gas defined above and for the first

experienced 200 collisions. The particles are characterizex;i>< 10* of 2x 10 iteration steps. This time corresponds, on
— 6 1 — . 1

E(ylésmassl ofh3.&_10 | _kg ar;]d a ‘i"a”.‘e.ter ?ﬁh_ 2'0“. average, to 200 collisions per particle. The last figure illus-

m. In the simulations the inelasticity of the Colll- 4aqthe decay of the KE for different values of the restitu-

sions is represented by the restitution coefficiantwhich tion coefficient, and we can observe, as expected, that the
varied between 1.Qelastic caseand 0.7 by steps of 0.2. cooling state is reached more rapidly @ass decreased. In
Moreover, the results reported for each valuexofvere av- Fig. 2b) we give the time evolutions oE(t)~ Y2 for the

eraged over ten simulations. Only the see_d of t_he randorHifferent values ofa used, and we show that these time
numbers generator was changed at each simulation. evolutions do not obey Ed1) for long times. The best fitted
curve we obtained for the time evolution of,H is given by

In Fig. 1 we give the results obtained for the time evolution
of the inverse of the square root of the KIE, /2, for the first
900 iteration steps with 0.98a¢=<0.70. This figure shows
that for «=(0.8,0.98) the energy time dependence is, quali-
?Qtively, in agreement with the results given in Rdf8,8].

A. Temperature
— . —1/2_ (a1—ay)
Several author§5,7,8), inspired by the works of Jenkins B =1 2
and Richmar]{19], have studied the formation of spatial in- 1+ ex;{ 0)

homogeneities of a granular gas by a kinetic theory ap-

proach. These works have deduced, from hydrodynamiclik
assumptions, that the time evolution of the kinetic energ
(KE) of an inelastic granular gas in a homogeneous state, a
obeys an equation of the forf(t)=E,/(1+At)?, where
E, is the initial energy and\ is a function of the restitution
coefficienta. Moreover, the formation of spatial instabilities
were obtained by considering a Maxwellian velocity distri-
bution in the homogeneous initial state. This last assumptio
seems justified for almost elastic collisions by experimental
studied13-19 on dilute disk gases connected to a reservoir
of energy, which showed that the velocity distribution func-
tions are very close to a Maxwell-Boltzmann distribution for We analyzed the velocity distributions obtained from
a close to 1.0. Moreover, density profiles show the forma-simulations performed for the granular gas described in Sec.

as

Shis last result, which encloses those given in Fig. 1, sug-
Ygests that the time evolution of the energy proposed by Eq.
r%ﬁj has a limited validity. The important point to stress here

is that the region where Edl) is valid in our simulations
corresponds to a state where, on average, the particles has
experienced less than a collision. Therefore, we can reason-
ably assume that the system has not yet reached the homo-

eneous regime.

B. Velocity distributions
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FIG. 1. Time evolution o~ for values of the restitution coefficient varying from=(0.7,0.98) for the first 900 iteration steps.

IlA for «=(1.0,0.7). We considered the speed distributionrelated to the derivation of the kinetic equations for inelastic
v=(vz+v))"? and thev, component of the velocity. Sev- hard sphere gases. The second concerns the derivation of
eral simulations were performed by considering as initialhydrodynamiclike equations for such systems. Indeed, in an
conditions one of the three following initial velocity distri- inelastic gas not submitted to external forces or constraints
bution functions: a Maxwellian, a Gaussian, and a constarthere is no equilibrium distribution except the state of com-
distribution. We observed that these distributions led theplete rest for all the particles. Thus hydrodynamic expan-
granular gas to the same class of asymptotic velocity distrisions like the Chapman-Enskog scheme must be reconsid-
bution. The results presented here used a constant initial véred. Such an expansion must be performed around a
locity distribution with random initial positions and averaged velocity distribution valid in a locally homogeneous state.
over ten simulations. Figure(® shows the speed distribu- This means that the knowledge of an explicit solution for a
tion for an elastic granular gas which exhibits an excellencomplete homogeneous state is essential: It would provide
agreement with its corresponding Maxwell-BoltzmgMB)  the zero order distribution around which a gradient expan-
distribution. Fora in the range(0.98,0.70 we obtained, in- sion may be performed. We show below that a promising
stead of a Maxwellian, a distribution which can be assimi-answer to this question has been folihd]. More precisely,
lated to a Gaussian where the width of the distribution dewe find the complete set of moments for the reduced two-

creases as the inelasticity increafefg. 3(b)]. body distribution. This result is exact since it has been de-
The analysis of the, distribution for a=1.0 yields a rived without any approximation from the complete Liou-
Gaussian distributiofiFig. 4a)] of the form ville equation for an inelastic hard sphere gas. The
distribution function can be inferred from the infinite set of
¢ A ;{ Z(UX—UC)Z) 3 its moments under certain conditions on the parameters.
(vx) y0+ Wmex w ( )

A. Liouville equation

A similar result was obtained fox=(0.98,0.70). In Fig. We consider a gas of identical macroscopic spheres of
4(b) we show that the width of the distribution decreases aginite radius interacting by inelastic and instantaneous colli-
the inelasticity increases. This last is in accordance with theions of restitution coefficiend (0<a=<1). Each particle
results obtained for the speed. We believe that this decreagsoves, between collisions, with constant velocity in a
in the velocity range implies velocity correlations which straight line motion. The collision takes place when the cen-
should be included in the distribution function. A possibility ter of two particles are at a distance equal to the diamseter
to include these velocity correlations is detailed in the nexof a particle. The particles are smooth spheres, so that no

sections. change affects the projection of the relative velocity on the
tangential plane at the contact point of the two colliding

IIl. HOMOGENEOUS STATE: EXACT RESULTS sph_eres. '!'he construction_of th_e ps_el_Jdo-LiouviIIe equati(_)n

ON THE VELOCITY DISTRIBUTION for inelastic hard spheres is quite similar to that for elastic

collisions[2,10,17,18. The only difference is the nonconser-
In this section we study theoretically the homogeneouwation of the phase space volume due to the inelasticity of
regime of an inelastic hard sphere gas. Our objective is ¢he hard sphere collisions. This feature is taken into account
complete specification of the velocity distribution for that in the collision term by the Jacobian of the phase-space
state. The reason behind this analysis is twofold. The first isransformation corresponding to the collision:
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FIG. 2. (a) Time evolution of the kinetic energyn Joules for the first 7x 10* iteration steps forr=0.98(continuous ling a«=0.90(-),
«=0.80 (-—), anda=0.0 (-). (b) Time evolution ofE "' obtained from simulations for 2 10* iterations. The continuous bold line
corresponds tex= 0.7, while the thin continuous line correspondsate 0.98.

. 1+, o . Transformation$4) and(5) conserve the total momentum of

Vi =vi— 2 e(€-vij), (4 the two particles, but their total kinetic energy decreases:
’ m 2\(2 T \2

- - [l4a). L. E :E_Z(l_a )(€-vij)%, (6)

Uj:Uj+ 2 E(E'Uij), (5)

where m is the mass of a particle. With these remarks in

-, , . mind, the Liouville equation can be written as
wheree is the unit vector along the direction from the center

of particlej to the center of particle and the primed veloci- apn N gpny 1 N B
ties represent the post-collision data. The relative veIQI;ity at +Zl Vi (9—»: 2.4, KWpy, (7)
is defined as - i =h=

where py is the N-body distribution function and the colli-
Vij =V~ Vj . sion term for two particles,j reads
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FIG. 3. (@ Comparison between the Maxwell-Boltzmann distribution)ef(uf+v§)1’2 (solid line) and the results obtained by simula-
tions for @=1.0. (b) Speed distributions obtained far=0.98 (O), a=0.90 (*), «=0.8(-), anda=0.7(—-).

N o o= - .. B. Liouville equation for the HCR
KiDpy=a fd €(e-vi))O(e vj;)
For a spatially homogeneous state such as the HCR the

1 . . . N distribution py depends only on the relative positioﬁ§.
X ?5(“; —ae)pn({rd {vidk=i,jvi o)) Hence, the free flow term of Eq7) is replaced by
_5(Fij+ag)PN({Fk}a{5k}) ) 1 Y L apy
- > Vi
2 ij=1 &rij

and Wheréij =Fi—Fj R andz;j’ are given by Eqs(4) and

(5). Here we do not give the proof of this result since asimi-By integrating over the positions and velocitieshof- 1 par-

lar equation has been recently obtained independently biicles, Eq.(7) leads to an equation for the one-body distribu-
Brey, Dufty, and Santof2]. tion f, which reads
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&fl(vl attractors in phase spa¢8,4]. Such attractors imply non-
—'— f d3v2f d?e(e-v1)O(€-v10) trivial velocity correlations. Henceforth, we believe that the
above truncation hypothesis should be carefully revised.
—zfz(Fl,Fl— ae,vy,05) C. An exact result for the HCR two-body distribution
o
First, let us show that although the kinetic energy is not
. - . o conserved in the collision of two particles, there remains a
—fa(ry.ritaevy vy . (9 part of that energy which is invariant. To show this, we in-
troduce the center of mass velocity of the two particles,
In the collision term of this reduced equation appears the . vito,
two-body distributionf, which, in turn, obeys an equation Uip= (10)

whose collision term containg;. In this way, an infinite 2
BBGKY hierarchy of equations is generated for the reduced

distribution functions of growing order. For dilute gases of along the relative velocny)lz already defined above. The
elastic hard spheres, this hierarchy is truncated by the mdatter may be projected along the unit vecéowhich lies on
lecular chaos assumption which, in a few words, amounts téhe direction from the center of particle 2 to the center of
factorizingf, into f,f, . This factorization implies the small- particle 1:

ness of the velocity correlations. However, for inelastic hard o

sphere gases, numerical simulations show the existence of V1= Y+ €g, 11
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with
y=(1—€X€)-v1p (12)
and
The definitions oft;, andv,,, allow us to write
- - v
v1=Ugppt =2 (14
2
.. g
Uo=Up— o (19
Thus we can write
. . y+e
v1=Uppt yTg (16)
. . yteg
Vo= Ui T (17

When Egs.(16) and (17) are inserted intoE=(m/2)(v?2
+v3), one obtains

2
, Y g
Uit o+

2
E=m

: (18)

where we have used the fact thatis orthogonal toeg.
However,
Eo=m(uiy+ ¥?/4), (19

is invariant in the inelastic collision. Indeed,. is the center

INELASTIC GRANULAR GAS: COMPUTRR . ..

2099

The variation ofg; after collision is given by

Ej=Tg2 25
179 (25
or, equivalently,
’ m . >y N2
EIZZ(E'U12) , (26)
with
(e:v1)=€ Wi~ (1+a)e(e-v1)). (27)
Using the fact that is a unit vector, one obtains
g'=-ag, (28)
and finally we obtain
m
Ei—Elz—Z(l—az)gz. (29

The above decomposition & suggests that the time evolu-
tion of the HCR is essentially due to the variation of the
successive moments of the quanttysee Eq(13)]. In fact,
as we show next, these moments obey an exact infinite hier-
archy of equations independently of the moments of the
other phase-space variables of the system. This is readily
proved by computing the time evolution of the successive
moments oflg| (see the Appendix for the detailed demon-
stration:

xe=(19["). (30)
Using the Liouville equatior{7), for the HCR and integrat-
ing over all space variables, one readily obtains an expres-

of mass velocity which is proportional to the total momen-sion depending only on the two-body distribution. This is
tum of the two particles. The latter and the kinetic energy ofdue to the fact thag is a two-body phase-space quantity.
the center of mass are invariants, as can be seen from Ed¥ext a change of variables to the center of mass and to the

(4) and(5). For 77 its value after collision is

-

Y =(1—€X€) v}y (20)
More explicitly, we have
Y =(l-exe)-[vp—(1+a)e(evi)], (2D
and, by using
(I-€X€) €=0, (22
we obtain
Y =7 23

A glance at Eq(18) shows that the kinetic energy may be

decomposed aB=E,+E;, with

m 2
E1=40> (24

relative positions and velocities leads, after some simple but
tedious algebra, to the hierarchy

X
a_tk =2mna?(a—1)Xy4 1

(3D

for any integer value ok. These last equations are an exact
consequence of the Liouville equation. To our knowledge,
these equations constitute a new result. This difference-
differential equation can be exactly solved by calculating the
Taylor series ofx, in time. The recursion relation between
successive time derivatives generated by this equation en-
ables us to derive the exact general term of the above Taylor
series. The derivation is straightforward, and one obtains the
solution

= [27(a—1)na?t]' [k+1—1]!
xk(t)=|2[ m(a 1 [[k_l]!]

=0 I

Xk+1(0),
(32

where
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FIG. 5. (a) Time dependence for,(t) and for/x,(t) in arbitrary units of time fore=0.98, 0.90, 0.80, 0.70, and 0.60. (@ the closest
curve to thex axis corresponds ta= 0.6, and the upper curve was obtained dor 0.98. In(b) the nearest curve to theaxis corresponds
to «=0.98, and the upper curve correspondste0.6.

i1\ a—1

iar-I1 (“l_l)

vergence is very slow. This is perhaps due to singularities in
(33 the complex plane of the time which cannot be detected di-
rectly from the Taylor series. Hence an excessively large

is the  factorial of k [19] for g=e. The above solution is number of terms is needed to obtain the correct long time
valid for anyk= 1. Clearly, the above series have generally aP€navior ofxy(t). In Fig. 5 we give the curves fo,(t) and

finite radius of convergence sinee<1.

1/\x5(t) obtained with our series. These curves should be

Let us analyze more closely the series giving the momengompared with our simulation resultsee Fig. 1 and the
x,(t). Generally, for a large set of initial conditions, the theoretical results of Ref2]. It can be seen that our curves
series has a finite radius of convergence. However, this corgree with those of Ref2] for a short time. However, in
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order to compare the behavior for larger times, some converlready satisfying to remark that it depends on the initial
gence acceleration algorithm, such as Shanks transformatiatate o, but, it is important to notice, as expected, that it
or Padesummation, should be appplied to our series. Furdiverges fora=1.
thermore, analytical methods may be envisaged to find the

asymptotic behavior of the function defined by our series,

such as the Borel integral summation. This analysis needs

some time to be developed, and will be presented in a further The simulations presented here extend over a large range
publication. Nevertheless, an important point that can bef inelasticity strengthr. For most values of this last param-
clarified already at this level of our work is the following: it eter we observed that the time evolution of the average ki-
can be shown, without ambiguity, that our seljigsg. (32)]  netic equation is not that proposed by E43). Our theoret-
gives, for values ofr near 1, the equation proposed in Ref. ical results confirm this resulisee Fig. 5. However, more

IV. CONCLUSIONS

[2] [see EQ.(43), given in Sec. I\. This can be demon-
strated in the following way. Equatior(82) and (33) give,
for k=2,

©

2 [2m(a—1 nazt]'[1+ I X,4(0).

0= !

(34

For a near 1, thex factorial behaves like the factorial

lim[n]!=n! (35
Q’—$1
since
n m
a"—1
| =
(=11 ( — )
and
i am™—1 _
aILnl a,_l -m
Thus Eq.(34) may, fora=~1, be rewritten as
Xa(t)= 2, [2m(a—1)nat]' (1+1)x,41(0).  (36)
=0
Let us consider initial moment of the form
X11(0)=02"", (37)

with o a positive real number. Hence E@6) becomes

xz(t)=a§|20 [27(a—1)naaot] (1 +1),

(38)
which can be readily summed to yield
2
Jo
Xp(t)= (39

(1+ 27| a—1|natogt)?

This expression is comparable to the result of R&f.for
T(t) [Eqg. (43) given below, provided

1

T= STa—1inao.

wla—1|na‘oy (40

systematic and quantitative verifications of these statements
should be carried out.

Having in hand the exact set of moments|gf for the
two-body HCR distribution function, we are now in a posi-
tion to build the distribution function and to study its
asymptotic behavior. Since these last calculations are still in
progress, we conclude with the following remarks. First, the
decomposition oE into an invariant parg, and a variable
partE; indicates that a complefie function, built as a prod-
uct of an arbitrary function oE, and a function ofj with its
moments given by Eq32), is a solution of the Liouville
equation. Such a two-body distribution is clearly not factor-
izable into twof; functions. Henceforth, velocity correla-
tions are not negligible. Second, thg distribution, with
moments given by Eq32), is very unlikely to be a Gaussian
for low values ofa. Third, the evolution equation for the
granular temperature,

T:

i (E) @D

which is quoted by most of the authdsee Refs[3,7,8)) has
a limited validity. The corresponding evolution equation
reads

aT(t) 2 —
A Bnkg T OOWT

(42)
whereW is independent of the temperature and is an integral
over a rescaled two-body distribution. The parameteep-
resents the density arlg; is the Boltzmann constant. Equa-
tion (42) can be solved in terms of the initial conditions

-2

T(H)=T(0) , (43

t
14—
.

wherer is a characteristic time constant dependingroand

W. Moreover, Eq.(42) may be obtained from Eq$31) for
k=2 by assuming a factorization &f into x,X;. Thus, the
time dependence df(t) given by Eq.(43) is an approxima-
tion whose validity domain should be explored by comparing
it with the exact time dependence given by E8R). As far

as this is concerned, the simulations reported above exhibit
in some cases strong deviations with respect to(B2). We
think our results call into question the classical assumptions
of molecular chaos and of the generality of the Gaussian
shape for the asymptotic distribution when we study an in-

Thus, as a by product, we have obtained an analytic form foelastic granular gas. Finally, we hope our results will help to
the characteristic time of the dissipative decay of energy. It islarify these fundamental problems.



2102 J. M. SALAZAR AND L. BRENIG PRE 59

ACKNOWLEDGMENTS We compute them for any positive integemith the exact

We would like to thank A. Garcia for fruitful scientific distribution

and technical discussions. Moreover, we would like to thank . . . .
Ghisland de Jacquelot and J.M. Sabbah from S.G.| for their [N ST SN S IV O P

help in developing a parallel version of our computer code.
which is a solution of the Liouville equatidiEq. (10)]. That

APPENDIX: DERIVATION OF THE RECURSION IS,
EQUATION FOR THE MOMENTS (|g|)
Let us consider the momentfy;,¥) where <|912|k>:f d®r -+ dPuplgsd on(t), (A1)
glz:(rl_rf)'(ljl_vZ) _ which obeys the following equation for a spatially homoge-
[ri—r, neous state:

J 1 X2 PR
E<|912|k>:_f d3"1"'dSUN|912|k§ izl ;1 (Ui_vj)'<F_o_'_—>)pN(t)

2 N N
a N > >
+—f d3r1---d3vN|g12|kf d2€>, > €v;0(e-v;;)
2 e ’ ’
X ?5(I’i'j—ae)pn(l’1, . ,I’N,vl, PP ,Ui, ’U], Y s ,UN;t)
B+ aDPe(Frs - P - O ;t>]. A2)

The first term on the right-hand side of the above equatiorHence, the free flow term can be written as
corresponds to the free flow of the two particles 1 and 2, and

gives a vanishing contribution tai{dt)(|g;J*). This last is

easily shown as follows; let us denote the free flow term by . 3. 3. 43 43 - - - -
®. Then it reads (I)—kf d rld r2d Uld szz(rl,rz,vl,vz)

1
N e s o K—1f( 2 2 _ _
@:-f d3r 13 ,d%0 1030 5| 10 019V 12 Viof 5, X|F12| 924" H(922+ ¥12) S9N Y12) — 912912} =0,
and an integration by parts gives in which we used the fact that
b= J d3l’ 1d3r2dsv 1d302 le;lz' 612“’\12' F12|k, |012|2= g%2+ 7%2

wherert,, denotes the unit vector along,. The gradient It can be easily seen that the integrand is odd in the variable
yields 012 if f, is supposed even in that variable, which is a natural

assumption for a homogeneous state. Thus the free flow term
vanishes because the integration o{rgrandzfz includes an

<I>=kf d3r 103r 5030 1030 5| F 10 U 12 M 20 12 Vgl P10 V19 integral overg;, from —« to +%. The second term on the
right-hand side of Eq(A2) provides the contribution of col-
where an easy calculation for the gradient leads to: lisions to the time evolution of|g1,|*). Three types of con-

tributions appear in that term. The first corresponds to
=1, j=2ori=2, j=1. The second appears for 1 and 2
andj+#1 and 2 and permutation ofandj. Finally, the third
case corresponds foandj#1 and 2. Let us start with the
first contribution,i=1,j=2 (or the converse Thus we can

—(M12:019)|T 12 v1dl} write

e e A o 1 "~ -
012'V12|"12'012|=r»_|{|012|239’fr12‘U12)
12
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K]_z:?f d3r1- : ~d3rNd301- : 'd3UN|g]_2|kf d?e 6'U]_2®(6'012)
1 g - e U g e o e s e -
X ZZ5(r12—ae)p({r},v1,v2,v3, e D)= 8(rptae)py(rt vkt - (A3)
|
The integration of the last equation over the variables ;1 _,_;2
f3, ... fn andos, ... v, Which act directly orpy, gives > =R,
a® 3 3 a3 43 o - - . with a Jacobian equal to 1, and
K12:7f d I’ld r2d Uld Uzlg]_2| fd EE'U12®(E'U12)
1 V17 U2= V12,
X | 22012 ae)fa(v1,r2. 01,05 o
U1+1)2 -
2 =U1p,
_5(r12+a5)f2(r11r2:Ul1v2;t)]-
Now, by performing the transformations follciwed by the decomposition af;, |nt9 its prmecyonsﬁ;lz
on € and y4, on the plan orthogonal te, one obtains, after
F1—r=l1p, integrating over the variable®;, and Uy,
(Ad)

a? . (= 1 R R
K12:7f dzrlzf_ dglzf d2712|912|k+1(?®(_912)¢2(r12,912§t)_(912)¢2(r121912;t) ,

where ¢, is the two-body distribution reduced ovéﬁz and 612. Now, since we know from the binary collision law that
g12= — Qi

we can insert this relation into E¢A4) and obtain, after a simplification of powers @fand a grouping of terms,

a? L[ R
K12:7(6¥k— 1)[ dszo dg1d 914 1 (r12,91231),

which finally gives
Kio=2mna?(a*—1)(|g;* ). (A5)

For the second type of contributiom=1 and 2 andj#1 and 2, or the convers®n the right-hand side of EqA2), we
proceed as follows. For example, let us assumé andj=3. Then the term to analyze is

a? . .-
K123:7f dsrl'"dngdsvl"'dst|912|kf d?e e 0130 (€01

050205, . oN) = 8(F gt ae) pn({r} vkt |- (A6)

1 . - - - -
X ?6(r13_a6)pN(rla e 1rN1Ula ..
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Proceeding along the same lines as in the previous dase
=1, j=2), we can replace the variables, r,, andrs by
the center of mass positio®,3, vy, v,, anduvg by the
center of mass velocity;»s, and their corresponding rela-

tive veIocitielez and 513 and relative positionElz andflg.
Afterward we perform the integrals over all the other vari-

ables with the exception Cﬁlz, F13, 012, andgqz. This
leads to

a’ .
K123:7J' d3r 12d2|'13d912d 014914 kgls

1 I
X ?(9(_913)fs(rlzar13,9i2=gi3;t)

~0(919)3(r 12.713,912,91351) (A7)
Here again we have decomposed the velociﬁgsand 513
into g4» and ;/12, andg;z and )713, respectively, and we also

integrated overy;, and y;3. By the collision rules we have
that
(A8)

_ '
J13= — a013.

Now, by using Eqs(4) and(5) for particles 1 and 3 with Eq.
(A8), we obtain that
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(

1+«
2

!
M12:713913-

(A9)

012= 012~ (
Moreover, by inserting Eq$A8) and(A9) into Eq. (A7), we

obtain a factor in the integrand of EQA7) of the form

K
li
913>

1+a
2

!
l12:713013

912~ (A10)

which can be rewritten as follows:

1+« K

2

>y
M12°r13M13° V13

' - >y
Q10— M3 vja

The absolute value factor is clearly evenripy. Hence the
whole expression is odd in that variable. This leads us to

claim that the integrand appearing in E&7) is odd inr ;5
provided thatf; be even ing;3. Henceforth, the integral

overr 5 involved in Eq.(A7) vanishes. For the third type of
contribution { andj different from 1 and it is straightfor-
ward to show that it vanishes. Indeed, the integrations over
all the variables except those attached to particles 1 and 2
may first be performed. Using the velocities after and before
collisions, it can be seen directly that all these terms are
identically zero by the same reasoning as that leading to the
conservation of the norm of the distribution. Thus, we have
established the differential differeng¢Eq. (31)] for the mo-
ments(|g7*).
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